Solvability of an impulsive boundary value problem on the half-line via critical point theory

نویسندگان

  • M‎. ‎ Briki Laboratory of Fixed Point Theory and Applications‎, Ecole Normale Superieure‎, ‎Kouba‎, ‎Algiers‎, ‎Algeria‎.
  • S. Djebali Department of Mathematics‎, ‎Faculty of Sciences‎, ‎Al Imam Mohammad Ibn Saud Islamic University (IMSIU)‎. ‎P.O‎. ‎Box 90950‎, ‎Riyadh 11623‎, ‎Saudi Arabia and Department of Mathematics, Ecole Normale Superieure, Kouba.
  • T. Moussaoui Laboratory of Fixed Point Theory and Applications‎, Ecole Normale Superieure‎, ‎Kouba‎, ‎Algiers‎, ‎Algeria‎.
چکیده مقاله:

In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of a Third-order Three-point Boundary Value Problem on a Half-line*

In this paper, we consider the solvability of a third-order three-point boundary value problem on a half-line of the form: { x′′′(t) = f(t, x(t), x′(t), x′′(t)), 0 < t < +∞, x(0) = αx(η), lim t→+∞ x(t) = 0, i = 1, 2, where α 6= 1 and η ∈ (0,+∞), while f : [0,+∞)× R → R is S − Carathéodory function. The existence and uniqueness of solutions for the boundary value problems are obtained by the Ler...

متن کامل

Solvability for Second-order M-point Boundary Value Problems at Resonance on the Half-line

In this article, we investigate the existence of positive solutions for second-order m-point boundary-value problems at resonance on the half-line (q(t)x′(t))′ = f(t, x(t), x′(t)), a.e. in (0,∞), x(0) = m−2 X i=1 αix(ξi), lim t→∞ q(t)x′(t) = 0. Some existence results are obtained by using the Mawhin’s coincidence theory.

متن کامل

Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance

Differential equation with fractional order have recently proved valuable tools in the modeling of many phenomena in various fields of science and engineering [1-5]. Recently, many researchers paid attention to existence result of solution of the boundary value problems for fractional differential equations at nonresonance, see for examples [6-15]. But, there are few papers which consider the b...

متن کامل

Solvability of a third-order two-point boundary value problem

A new comparison theorem is proved and then used to investigate the solvability of a third-order two-point boundary value problem  u′′′(t) + f(t, u(t), u′(t), u′′(t))) = 0, u(0) = u′(2π) = 0, u′′(0) = u′′(2π). Some existence results are established for this problem via upper and lower solutions method and fixed point theory. 2000MR Subject Classification: 34B15, 34C05

متن کامل

Existence and Multiplicity of Solutions for Some Fractional Boundary Value Problem via Critical Point Theory

and Applied Analysis 3 A3 lim inf|x|→ ∞ ∇F t, x , x − 2F t, x /|x|μ ≥ Q > 0 uniformly for some Q > 0 and a.e. t ∈ 0, T , where r > 2 and μ > r − 2. We state our first existence result as follows. Theorem 1.1. Assume that (A1)–(A3) hold and that F t, x satisfies the condition (A). Then BVP 1.1 has at least one solution on E. 1.2. The Asymptotically Quadratic Case For the asymptotically quadratic...

متن کامل

Multiplicity Results for a Discrete Boundary Value Problem via Critical Point Theory

This paper is a survey on some recent multiplicity results, contained in [11], for a discrete boundary value problem involving the p-Laplacian via critical point theory. An overview on the abstract critical points results used to obtain them it is also given.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 3

صفحات  601- 615

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023